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A theory of the phenomenon of thermal runaway in ceramic materials undergoing microwave 
heating is presented on the basis of a simple temperature-time equation. The non-linear 
evolution inherent in the equation is shown to arise naturally from physical arguments and it is 
shown how the parameters of the theory may be calculated from the microscopic absorption 
processes and information about the material under consideration. The theory is applied to 
experimental observations reported on several different materials and shown to be in good 
agreement with the data. 

1. I n t r o d u c t i o n  
The purpose of this paper is the understanding of the 
interaction of microwaves with ceramic materials in 
general, and the phenomenon of thermal runaway in 
particular. One of the reasons for the interest in the 
interaction of microwaves with ceramics is the obser- 
vation, reported by several investigators in the recent 
literature [-1-3], that microwave heating can lower the 
sintering temperature in several materials by several 
hundreds of degrees and shorten the sintering time by 
several hours. It appears that microwaves not only 
increase the heating efficiency by concentrating the 
heating process within the material rather than in the 
furnace in which the material is placed, but also have 
basic consequences such as more efficient atomic diffu- 
sion within the material. The study of microwave 
heating from the point of view of basic effects is clearly 
of crucial importance at the moment, both from the 
practical and the fundamental point of view. 

Foremost among the interesting phenomena associ- 
ated with microwave heating of ceramics is "thermal 
runaway" [1, 4, 5]. This phenomenon is typified by 
Fig. 1. In a number of materials, it is found during 
microwave heating that the increase of temperature is 
found to be gentle at first but explosive later when a 
threshold is reached. The sudden rise of temperature is 
referred to as thermal runaway. It is clear that a theory 
of the interaction of microwaves with ceramics must 
address this phenomenon in as thorough a way as 
possible. To attempt this in a manner which includes a 
practical description as well as a basic understanding 
is the focus of this paper. 

We have carried out extensive studies of various 
aspects of the runaway phenomenon both at the 
microscopic level and the macroscopic level. In the 
context of the former we have considered the details of 
the process of absorption of microwaves, the possibil- 
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ity of what is termed "chaos" in the modern physics 
literature, and generally non-equilibrium interaction 
of electromagnetic fields with matter. As a result of our 
various efforts we have found that a practical as well 
as natural description of thermal runaway can be 
given in terms of a simple non-linear temper- 
ature-time equation. We have found that the equation 
provides a single starting point capable of describing, 
quite reasonably, a large variety of different materials 
undergoing thermal runaway; that it is based on 
simple physical arguments; that its parameters are 
calculable from basic considerations; and that it ex- 
plains widely differing time-temperature curve 
shapes as will be shown in Figs 2 and 3. 

The rest of this paper is outlined as follows. In 
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Figure 1 The thermal runaway phenomenon under microwave 
heating showing the gentle initial rise of temperature followed by a 
steep increase. The data is from observations on chromia for 500 W 
reported in [1]. 
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Section 2 we present our  t empera tu re - t ime  equat ion  

and  a brief discussion of its parameters.  In  Section 3 
we use the equa t ion  to describe experiments  and  show 
how it fits the observed data  on zinc oxid e , a lumina,  
s t ron t ium ti tanate,  i ron oxide, and  silica. The observa- 
t ions are those reported by McGil l  e t  al. [5], Sheppard 

[1], and  Varadan  e t  al. [4]. In  Section 4 we discussl in 

essential detail, how we arrive at our  suggested equa- 
t ion from microscopic considerations.  We also out l ine 
how the parameters  of our  equat ion  can be calculated 
for any given material.  Section 5 contains  concluding 

comments .  
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Figure 2 Thermal runaway observations and the application of our 
theory as in Equation 4. The experiments carried out are for (a) 
strontium titanate with initial porosity 53 % undergoing microwave 
sintering as reported by Varadan et al. [4], (b) silica undergoing 
microwave heating at 500 W as reported by McGill et al. [5], and (c) 
~.zinc oxide undergoing microwave heating as described by Sheppard 
[1]. Our theory is represented by solid lines. 
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Figure 3 Thermal runaway observations to further materials and 
the application of our theory as in Equation 4. The materials 
studied are (a) silica undergoing microwave heating at different 
power levels (as shown) as reported by McGill et al. [5], (b) iron 
oxide undergoing microwave heating as shown by Sheppard [1] 
and (c) alumina of initial porosity 50% undergoing microwave 
sintering as reported by Varadan et al. [4]. As in Fig. 2, our theory is 
represented by solid lines. 



2. The tempera tu re - t ime  equat ion 
We have encountered four different types of the shape 
of the time-temperature curve in our study of the data 
on various materials. Type 1 is seen in Fig. 1 and is 
characterized by a dramatically sudden increase in 
temperature and no saturation within the reported 
observations. Type 2 shows only a slight effect, i.e. a 
near-linear rise of temperature. Type 3 is characterized 
by a rise followed by temperature saturation and type 
4 combines these effects into an S-shaped curve which 
includes the gentle rise, the steep increase and the 
saturation. Types 2~4 can be found in Figs 2 and 3. 
The essential features of the observed runaway are 
thus that generally there is an initial stage in which the 
temperature rises relatively slowly with time, followed 
by a second stage in which the rate of rise is enhanced 
significantly, resulting in an explosive (or at least 
steep) increase of temperature, and a final stage in 
which the temperature saturates to the environmental 
temperature. There are materials for which only the 
first stage is observed, and others for which only the 
first and the second are observed. It is therefore helpful 
to regard the runaway phenomenon as consisting of 
the three stages in general and to consider the mater- 
ials in which particular stages are not observed as 
being ones in which the relevant processes are absent 
as a result of parameter magnitudes. 

Our basic postulate is that the system consists of 
two species which we call the A species and the M 
species. The former consists of absorbing entities and 
is typified by impurities and inclusions whose relaxa- 
tion times (not resonance times) match the period of 
the microwaves and which therefore absorb micro- 
wave radiation through what is sometimes known as a 
Debye mechanism (see e.g. /-6]). These entities are 
absent in systems which are found to be transparent to 
microwaves. In such cases, the A-species entities are 
provided by aids which, when introduced into ceram- 
ics which are naturally transparent to microwaves, 
cause the absorption of radiation. It is also the absorp- 
tion by this A species that leads to the initial slow rise 
of temperature with respect to time, which we have 
called the first stage above. If n A is the number of the 
absorbers of the A species, and PCA the rate at which 
each absorbs energy from the microwaves (P being the 
microwave power), this initial stage ,of temperature 
evolution is described by 

dT  
- -  P k  A (1) 

dt 

where k A = nAC A. The final saturation stage is usually 
[7] described by a radiation-like term - cy 1 T 4 so that 
the combined equation appears as 

dT  
- PkA - -  (~1 T4 (2) 

dt 

Although the justification of the fourth power of tem- 
perature in the saturation term above is not clear 
because the losses responsible for saturation are not 
only radiative but arise from other sources as well, we 
will maintain the form to conform to standard proced- 
ures. In cases wherein the standard description is not 

applicable the loss term in Equation 2 should be 
changed appropriately. Equation 2 would also apply 
formally if the heating is in a conventional furnace, 
i.e. without microwaves, the term PkA then being 
simply the rate at which the conventional furnace 
supplies heat to the sample. The important additional 
term with which Equation 2 must be augmented is the 
one responsible for the explosive acquisition of energy. 
Our study of various aspects, microscopic as well as 
observational, of the thermal runaway phenomenon 
have led us to suggest the following simple model for 
the additional term. Interstitial atoms or vacancies lie, 
at low temperatures, in potential wells which bind 
them. The energetic height of these wells is substantial, 
namely of the order of eVs. These vacancies or inter- 
stitials are our species M. They do not absorb, or do so 
to a negligible extent, because neither their resonance 
frequencies nor their relaxation rates match the giga- 
hertz frequencies of the microwaves. However, if they 
are let out of the binding wells, they act like relatively 
free particles and absorb from the microwave radi- 
ation. The details of why carriers thus freed from their 
binding wells absorb to a much greater extent than 
bound carriers will be explained in Section 4 below 
from a microscopic analysis. Here we merely note the 
fact that the fraction f of the M-particles which are 
able to absorb will be given by 

f = e x p ( -  A / T ) [ e x p ( -  A/T)  + 1] -1 (3) 

where A is a measure of the barrier which the particles 
must surmount to become free of their binding wells. 
The form that Equation 2 must take to incorporate 
the above is now clear 

d T  
- P[kA + f ( T ) k M ]  -- ~1 T4 (4) 

dt 

where kM = nMCM and the quantities n M and CM refer 
to the M species but have the same meaning as the 
corresponding A quantities. 

Equation 4 is our starting point in the description of 
thermal runaway. 

3. Fits to exper imental  observations 
on diverse materials 

The basic evolution of temperature described by 
Equation 4 should be evident. If the barrier height A 
for the material under discussion is of appropriate 
magnitude relative to the initial temperature, the ini- 
tial time evolution of the temperature will be a slow 
rise at the rate nACA (per unit power) decided by the A 
species of absorbers, e.g. the sintering aids or imperfec- 
tions or natural absorbing agents. As the temperature 
increases the fraction of the M-absorbers which are 
capable of absorbing significantly will increase and 
there wilt be a substantial increase in the time rate of 
temperature. Depending on the value of the saturation 
terms, the temperature will then reach a plateau 
through saturation. This plateau may not be visible 
for systems in which the saturation terms are relatively 
weak. 

2485 



T A B L E  I Parameters deduced from the application of our theory (Equation 4) to thermal runaway observations on diverse materials 

Material k A [deg/min/W] k M [deg/min/W] A [deg] c h [1/s/deg 3] 

zinc oxide 9 x 10 -2 30 2800 0.46 x 10 -12 

(500 w) 
iron oxide 1.6 0.96 1.7 • 10 -3 0.5 x 10 -12 

(500 w) 
silica 3.9 • 10 -2 8.5 5400 0.35 x 10 -12 

(500 w) 
silica 1.8 • 10 -2 8.8 5600 0.35 x 10 -12 

(1000 W, 1500 W, 2000 W) 

Material P k  A [deg/s] P k  M [deg/s] A [deg] o" 1 [1/s/deg 3] 

alumina 8.1 • 10 -6 72 2600 1.9 x 10 -12 

(50% I.P.) 
strontium 1.1 • 10 -2 230 3600 4,1 x 10 -12 

titanate 
(53% I.P.) 

Equation 4 can be solved to quadratures as 

t + constant = ~dTh(T)  (5) 

h(T) = {P[nACA + f ( T ) n M c M ]  - -  c~T4} -1 (6) 

Either through the use of expression 5 or by fitting 
Equation 4 directly to observations it is possible to 
address experimental data. This is done for a variety of 
materials in Figs 2 and 3, and the resulting values of 
the parameters k A, k~, cry, and A are shown in Table I. 
It is remarkable that the agreement obtained for the 
widely different materials is excellent, that the value of 
crl is approximately the same for all materials con- 
sidered and is compatible with the value of the 
Stephan-Boltzmann constant ~ along with sample 
parameter values, and that the As extracted through 
our theory are not disparate in orders of magnitude 
relative to the barrier heights for defect formation in 
the materials. 

In Fig. 2a we see data, reported by Varadan et  al. 

[4], on the t ime-temperature evolution of strontium 
titanate of initial porosity 53% during the process of 
sintering via microwave heating. The time-tempera- 
ture curve is of type 4 discussed above in that it 
includes all three processes mentioned: a gentle initial 
rise, a subsequent steep increase and a tendency to- 
wards saturation. The temperature range is from 
400 ~ to 1200 ~ and heating data has been collected 
for 600 s. The description by our Equation 4 is very 
satisfactory and the parameter values obtained are as 
follows: the trapped-free barrier A (measured as a 
temperature) is 3600 deg, cy~ is 4.1 x 10 -a2 s -1 deg -~, 
and the product of power P and the absorption rate k 
in degs -~ is 1.1 x 10 -2 for the A species and 230 for 
the M species. 

Fig. 2b shows observations of McGill e t  al. [5] on 
silica for microwave heating at a power of 500 W for 
7 min. The temperature rise is only from 22 ~ to less 
than 35 ~ the curve is of type 2, i.e. is near-linear, but 
shows a slight saturation tendency. Our fits result 
in the following parameter values: the barrier A is, 
5400deg, ~1 is 0 .35x  1 0 - 1 2 s - t d e g  -3, and the 
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absorption rate k in deg W - 1 min-  1 is 3.9 x 10- 2 for 
the A species and 8.5 for the M species. 

In Fig. 2c we see a curve of type 3 - exhibiting a rise 
and clear saturation - in zinc oxide from Sheppard 
[1]. The heating time is 7 min, the temperature range 
is from room temperature to about 100 ~ and our 
Equation 4 provides a satisfactory fit with parameter 
values as follows: the barrier A is 2800 deg, cr I is 0.46 
x 10-12s-Xdeg -3, and the absorption rate k in 

degW-~ min -~ is 9 x 10 -2 for the A species and 30 
for the M species. 

Simultaneous description of data for various power 
levels is shown in Fig. 3a. The curve is of type 2, the 
material is silica as in Fig. 2b, and the three curves 
correspond to power levels of 1000 W, 1500 W, and 
2000 W, respectively [5]. Our fits result in the follow- 
ing values: the barrier A is 5600deg, ~1 is 0.35 
x l 0 - t 2 s - l d e g  -3, and the absorption rate k in 
d e g W - ~ m i n  -~ is 1.8 x 10 -2 for the A species and 
8.8 for the M'species. 

Another type 3 curve but with very steep rise fol- 
lowed by very clear saturation is seen in Fig. 3b where 
our theory provides a good fit to the data on iron 
oxide given by Sheppard [1]. The temperature rise is 
dramatic in the first 3 min (the range being larger than 
1000 ~ and saturation behaviour is seen in the next 
4 min. Our deduced parameter }alues are: the barrier 
A is essentially absent, i.e. equals 1.7 x 10 -3 deg, cyl is 
0.5 x 10 -12 s - l d e g  -3, and the absorption rate k in 
deg W - 1 min-  t is 1.6 for the A species and 0.96 for the 
M species. 

A type 4 curve - S-shaped incorporating all aspects 
- is seen again in Fig. 3c. The material is alumina of 
initial porosity 50% undergoing microwave sintering 
[4]. Almost 900 ~ are covered in about 500 s and 
our fit is excellent with resulting parameter values 
as follows: the barrier A is 2600deg, cy 1 is 
1.9 x 10 -12 s-~deg -3, and the product of power P 
and the absorption rate k in degs -x is 8.1 x 10 - 6  for 
the A species and 72 for the M species. 

It is interesting to note that cy I has been found to 
be essentially the same in all the samples studied. 



Indeed, our o-1 may be taken to be related to the 
Stephan Boltzmann constant o- through the equation 

o'1 = o- (7) 

where S and V are the surface and volume of the 
sample and C v is its specific heat. The magnitude of o- 
is known through the well-known relation (see, e.g. 
[10]) 

ty = ( 2 ~ S k 4 ) ( 1 5 c 2 h 3 )  - 1  

= 5.68 x 10 -12 W/em2deg 4 (8) 

the quantities k, c and h being universal constants (the 
Boltzmann constant, the speed of light and the Planck 
constant, respectively). Although the parameter ~x in 
our theory would change from sample to sample (as 
indeed it does), and although the details of the surface, 
volume and specific heat of the samples used in the 
experiments we have analysed are not available to us, 
we would like to point out the following simple calcu- 
lation. If we take the Cv characteristic of alumina to be 
3 J/cm 3 deg and assume that the surface-volume ratio 
is 1 cm -1, we obtain (3" 1 to be 2 x 10-i= s - ldeg -3 .  
The value deduced from the application of our theory 
to the data of Varadan et  al. is (see Fig. 3 and Table I) 
1.9 x 10-lz s-1 deg-3. This agreement is closer than 
one might expect from the level of description pro- 
posed. However, it supports the view in the literature 
that the loss of heat by radiation is indeed the major 
factor responsible for temperature saturation in ther- 
mal runaway. We also see that the deduced magni- 
tudes of A appear compatible with usually accepted 
values of defect formation. They are not identical but 
do not differ by order-of-magnitude factors. The one 
case where A is found to be near zero, viz. that of iron 
oxide, corresponds, as it clearly should, to observa- 
tions in which the temperature immediately rises 
(without threshold) to high values: no barrier exists to 
thermal runaway and the A and M species can well be 
identical to each other. 

4. Microscopic origin of the 
temperature-time equation 

In order to understand the considerations which lead 
to Equation 4 for the evolution of temperature which 
we have suggested above and which, as we have seen, 
provides a rather satisfactory description of thermal 
runaway in a wide variety of materials, it is necessary 
to first note several important features of microwave 
absorption in general. 

We begin by pointing out that absorption of elec- 
tromagnetic radiation by free charges is very different 
from that by trapped charges. When an electric field 
representative of the incident electromagnetic radi- 
ation is applied to the charge in question, the charge 
is accelerated. The movement is opposed by friction 
forces which increase as the velocity increases until the 
friction forces balance the electric force. A d.c. electric 
field thus brings a free charge in equilibrium to a state 

of non-zero velocity. The product of this non-zero 
velocity and the electric force is the rate at which 
power is absorbed by the charge from the electromag- 
netic field. In the case of a charge trapped in a poten- 
tial well on the other hand, the effect is different. The 
velocity increases under the action of the electric field 
but this increase is opposed by another agent in addi- 
tion to the friction force, namely the binding force 
which constrains the particle to the well. In the ab- 
sence of friction, an oscillation of the charge occurs 
around the potential minimum which is displaced 
from the original minimum. In the presence of friction, 
the oscillation decreases in amplitude until the particle 
comes to rest at the new potential minimum. The 
equilibrium state under the combined action of the 
electromagnetic force, the binding force and the fric- 
tion force is thus that of res t  in contrast to that of a 
constant n o n - z e r o  ve loc i t y  which was the case for the 
flee absorber. Heating via electromagnetic radiation 
of low frequency is thus highly inefficient for a bound 
particle in relation to that for a free particle. If the field 
is a.c. it is possible to cause efficient heating even in the 
case of a bound particle by moving the particle re- 
peatedly from the rest state to which it tends, i.e. by 
matching frequencies through resonance. Microwave 
frequencies are, however, very low in comparison to 
resonance frequencies in ceramic materials. The d.c. 
case is thus realized in essence for the microwave field. 

In the light of the above considerations, it is natural 
to suggest that the significant increase of absorption 
that occurs in the phenomenon of thermal runaway 
has the transformation of bound into free absorbers as 
its source. Indeed, absorbers lying in potential wells 
would be bound at low temperatures but free if the 
temperatures are high enough to cause them to be 
released from the potential well through thermal fluc- 
tuations. The characteristic temperature is clearly the 
reciprocal of the Boltzmann constant times the energy 
barrier that the absorbers must surmount to become 
free. Such energy barriers are quite physical in ceramic 
materials and are of the order of the barriers for the 
formation or migration of entities such as vacan- 
cies or interstitials or, perhaps most appropriately, 
bivacancies. 

The picture behind our suggested equation is thus 
as follows. There would be no absorption and no 
heating whatsoever if the ceramic were totally trans- 
parent to microwaves. Absorbers which are either 
responsible for partial absorption by the material 
itself, or by impurities or other inclusions, give rise to 
the first term in Equation 4 which describes linear 
evolution of temperature, i.e. heating at a constant 
rate. We have called these absorbers the A species, as 
stated in Section 2. The bound entities described 
above, which can become free when the temperature is 
sufficiently high, form what we have called the M 
species. The fraction of them responsible for absorp- 
tion - and therefore for changing the rate of increase of 
temperature - is itself dependent on temperature. It 
therefore gives rise to the second term in Equation 4 
and results in a non-linear evolution of temperature. 
The specific expression 3 for the fraction f used in 
Equation 4 is the result of the simplest assumption 
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possible: that the M' species have access to two states 
only, the free state and the bound state, and that their 
relative proportion is determined by thermal balance. 
This balance is affected by microwaves since their 
absorption increases the temperature. Absorption by 
the M species can thus be negligible at first but 
substantial as time goes on when the temperature 
becomes high enough to free the M species. 

In all the above, it is to be noted that absorption of 
microwaves in ceramics cannot occur by the reson- 
ance mechanism but rather by a relaxation mech- 
anism [6]. The simplest way to understand the 
distinction is to consider a damped harmonic oscil- 
lator driven by an external sinusoidal field. In the 
absence of damping, or in the presence of small damp- 
ing, the external field has the greatest influence on the 
dynamics of the oscillator when the field frequency 
matches the natural frequency of the oscillator. This is 
resonance. Let us use the term "optimum frequency" 
to denote the frequency at which the external field has 
the maximum effect. As damping increases in magni- 
tude; only a minor shift in the optimum frequency 
occurs. However on further increasing the damping 
rate, the optimum frequency moves rapidly away from 
the natural frequency of the oscillator and approaches 
a "relaxation frequency" which equals the ratio of the 
square of the natural frequency and the damping rate. 
This is relaxation absorption. It is important to ob- 
serve that, in this limit, absorption can thus occur at 
field frequencies which cannot be identified with, and 
are much lower than, all frequencies in the system 
except the quantity we have called the relaxation 
frequency. The terminology arises because the phys- 
ical origin of the absorption is through a matching of 
the field period to a time characteristic of the relaxa- 
tion process that the oscillator undergoes under the 
combined action of damping and natural oscillatory 
tendencies. This mechanism appears to have been first 
invoked by Debye [6]. 

The procedure to calculate the parameters involved 
in our theory from microscopic considerations is not 
difficult. While we are not interested in carrying out 
such a calculation in the present paper, we will sketch 
the procedure briefly by showing some details regard- 
ing the M species. Their representative coordinate 
x would have undergone the following equation of 
motion in the absence of the temperature rise 

dZx adx dU 
d T  + d t -  + dx - caEcoscot (9) 

where U(x) is a spatially periodic potential typified by 
A(1 - cos ax) where a describes the spatial variation 
of the potential and A is a constant; ~ is a damping 
rate arising from interactions of various sorts with the 
rest of the solid; E and co are the magnitude and 
frequency of the microwave field, respectively; and c a 
is an appropriate constant. However, the temperature 
rise causes a stochastic perturbation of the kinetic 
energy of the M species. To obtain the appropriate 
terms that should be added to Equation 9 to describe 
the temperature rise in as simple a manner as possible 
(without turning Equation 9 into a stochastic differ- 
ential equation of motion), we rewrite the consequence 
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of Equation 9 for the evolution of the energy g, 
namely 

dg dt ( d x )  a t  1 fdx'~2 - (cxEcosot) - ~otk~f) (10) 

and append to it a source term arising from the 
absorption by the A species. The result is 

d~ dt ( d x )  ~-  1 //dx'~ 2 _ _ 
- ( c l e c o s c o t )  - 

+ e2((~f ) (Ecoscot ) )  (11) 

where y is the coordinate of the A species absorber, the 
symbol ( ) denotes an average over a cycle, and c2 is 
an appropriate constant appearing in the relaxation 
equation characteristic of the absorption of micro- 
waves by the A species. The relaxation equation is 
typically 

dy 
dt  + Fy = c3Ecoscot (12) 

where c a is an appropriate constant and F is a relaxa- 
tion rate, and can be used to calculate the last term in 
Equation 11 as a time average. Denoting that term 
by czE2g(co, F) where the dependence on the second 
power of the electric field magnitude has been 
made explicit, we see that Equation 9 is now to be 
augmented into the form 

d2x dx dU 
dt ~ + ~ + dx - c~Ecoscot 

+ c2E2g(co, F ) \d t  / (13) 

The microscopic parameters of the M-absorbers go 
into the potential U which can be obtained experi- 
mentally or through first-principles calculations along 
the lines of those carried out by the present authors 
recently [11], into the damping rate ~ and the con- 
stant ca. The A-absorbers make their presence felt 
through c 3 and g(co, F) which is closely related to the 
absorption coefficient or tan ~ of the A species. The 
parameters kg, kM and A are thus all calculable 
in principle. A microscopic theory based on such 
calculations will be presented elsewhere. 

5. Conclusions 
We have presented a simple theory of thermal run- 
away and applied it to experimental observations 
reported on a variety of materials. We have found that 
the theory provides a good description of the runaway 
phenomena. The essential idea behind our theory is 
simple and is provided by Equation 4. The micro- 
scopic origin of Equation 4 is explained in Section 4 
and it is made clear that the parameters of the theory 
are calculable. As stated in the introduction, the 
following are the advantages of our approach: 

1. The equation proposed provides a single starting 
point capable of describing, quite reasonably, a large 
variety of different materials undergoing thermal run- 
away. 



2. The equation is based on simple physical argu- 
ments and its parameters are calculable from basic 
considerations. 

3. The approach succeeds in explaining quite differ- 
ent time-temperature curve shapes as in Figs 2 and 3. 

Although the approach is relatively crude in the 
present form, it has considerable potential and we are 
in the process of developing it into a usable scheme of 
predictive power. Among the topics currently under 
investigation are: (i) the full calculation of the para- 
meters of the theory for a wide range of materials; 
(ii) the study of anomalous power dependence and sat- 
uration effects which are observed in several materials; 
(iii) the understanding of the feature, common to all 
the materials studied, that the deduced value of A is 
always smaller than the barrier height as measured 
from defect formation and migration experiments. The 
fact that the deduced values of ~1 and A are reason- 
able for the large variety of materials studied, and that 
the observed tan 6 in many materials [8] also shows 
Arrhenius dependence on temperature as in our 
expression 3 for f, lend support to our theory. 
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